2023
1. W. Ren, S. Lu, C. Yu, J. He, Z. Zhang, J. Chen*, and G. Zhang*, The Impact of Moiré Superlattice on Atomic Stress and Thermal Transport in van der Waals Heterostructures, Applied Physics Reviews, 10, 041404 (2023). (Featured Article)
2. S. Liu, S. Huang, Z. Zhou, P. Qian, B. Jia, H. Ding, N. Wang, Y. Li*, and J. Chen*, Observation of acoustic Friedrich-Wintgen bound state in the continuum with bridging near-field coupling, Physical Review Applied, 20, 044075 (2023).
3. J. He, C. Yu, S. Lu, S. Shan, Z. Zhang*, and J. Chen*, Complex role of strain engineering of lattice thermal conductivity in hydrogenated graphene-like borophene induced by high- order phonon anharmonicity, Nanotechnology, 35, 025703(2024).
4. J. Jiang, S. Lu, and J. Chen*, Phonon focusing effect in an atomic level triangular structure, Chinese Physics Letters, 40, 096301 (2023).
5. W. Ren, S. Lu, C. Yu, J. He, and J. Chen*, Carbon honeycomb structure with high axial thermal transport and strong robustness, Rare Metals, 42, 2679–2687 (2023).
6. C. Yu, S. Shan, S. Lu, Z. Zhang*, and J. Chen*, Characteristics of distinct thermal transport behaviors in single-layer and multilayer graphene, Physical Review B, 107, 165424 (2023).
7. Z. Zhang, Y. Guo, M. Bescond, M. Nomura, S. Volz*, and J. Chen*, Assessing phonon coherence using spectroscopy, Physical Review B, 107, 155426 (2023).
8. M.-J. Li, L. Yang, D. Wang, S.-Y. Wang, J.-N. Tang, Y. Jiang*, and J. Chen*, Fast prediction of the mechanical response for layered pavement under instantaneous large impact based on random forest regression, Chinese Physics B, 32, 046203 (2023).
------------------------------------------------------------------------------------------------------------------------------------------------------------------------
2022
1. Chen*, X. Xu*, J. Zhou*, and B. Li*, Interfacial thermal resistance: Past, present, and future, Reviews of Modern Physics, 94, 025002 (2022). (ESI Hot Paper & ESI Highly Cited Paper)
2. Z. Zhang*, Y. Guo, M. Bescond, J. Chen*, M. Nomura, and S. Volz*, Heat Conduction Theory Including Phonon Coherence, Physical Review Letters, 128, 015901 (2022). (ESI Highly Cited Paper)
3. Z. Zhang*, Y. Guo, M. Bescond, J. Chen*, M. Nomura, and S. Volz*, How coherence is governing diffuson heat transfer in amorphous solids, npj Computational Materials, 8, 96 (2022).
4. J. Chen, J. He, D. Pan, X. Wang, N. Yang, J. Zhu, S. A. Yang, and G. Zhang*, Emerging theory and phenomena in thermal conduction: A selective review, Science China: Physics, Mechanics & Astronomy, 65, 117002 (2022). (ESI Hot Paper)
5. W. Ren, J. Chen*, and G. Zhang*, Phonon physics in twisted two-dimensional materials, Applied Physics Letters, 121, 140501 (2022).
6. S. Lu, W. Ren, J. He, C. Yu, P. Jiang, and J. Chen*, Enhancement of the lattice thermal conductivity of two-dimensional functionalized MXenes by inversion symmetry breaking, Physical Review B, 105, 165301 (2022).
7. C. Yu†, Y. Hu†, J. He, S. Lu, D. Li*, and J. Chen*, Strong four-phonon scattering in monolayer and hydrogenated bilayer BAs with horizontal mirror symmetry, Applied Physics Letters, 120, 132201 (2022). (ESI Highly Cited Paper)
8. Y. Ouyang, C. Yu, J. He, P. Jiang, W. Ren, and J. Chen*, Accurate description of high-order phonon anharmonicity and lattice thermal conductivity from molecular dynamics simulations with machine learning potential, Physical Review B, 105, 115202 (2022). (ESI Highly Cited Paper)
9. X. Peng, P. Jiang, Y. Ouyang, S. Lu, W. Ren, and J. Chen*, Reducing Kapitza resistance between graphene/water interface via interfacial superlattice structure, Nanotechnology, 33, 035707 (2022).
10. J. He, Y. Hu, D. Li, and J. Chen*, Ultra-low lattice thermal conductivity and promising thermoelectric figure of merit in borophene via chlorination, Nano Research, 15, 3804−3811 (2022).
11. C. Yu, Y. Ouyang, and J. Chen*, Enhancing thermal transport in multilayer structures: A molecular dynamics study on Lennard-Jones solids, Frontiers of Physics, 17, 53507 (2022).
12. P. Jiang, N. Li, and J. Chen*, Observation of kinked soliton structure in realistic materials through wave packet simulations, Physics Letters A, 451, 128409 (2022).
13. J. Jiang, S. Lu, Y. Ouyang, and J. Chen*, How Hydrodynamic Phonon Transport Determines the Convergence of Thermal Conductivity in Two-Dimensional Materials, Nanomaterials, 12, 2854 (2022).
14. S. Jin, Z. Zhang*, Y. Guo, J. Chen*, M. Nomura, and S. Volz*, Optimization of interfacial thermal transport in Si/Ge heterostructure driven by machine learning, International Journal of Heat and Mass Transfer, 182, 122014 (2022).
------------------------------------------------------------------------------------------------------------------------------------------------------------------------
2021
1. W. Ren, Y. Ouyang, P. Jiang, C. Yu, J. He, and J. Chen*, The Impact of Interlayer Rotation on Thermal Transport Across Graphene/Hexagonal Boron Nitride van der Waals Heterostructure, Nano Letters, 21, 2634−2641 (2021). (ESI Highly Cited Paper)
2. Z. Zhang*, Y. Guo, M. Bescond, J. Chen*, M. Nomura*, and S. Volz*, Thermal self-synchronization of nano-objects, Journal of Applied Physics, 130, 084301 (2021).
3. Z. Zhang*, Y. Guo, M. Bescond, J. Chen, M. Nomura*, and S. Volz*, Coherent thermal transport in nano-phononic crystals: An overview, APL Materials, 9, 081102 (2021).
4. C. Yu, Y. Ouyang, and J. Chen*, A perspective on the hydrodynamic phonon transport in two-dimensional materials, Journal of Applied Physics, 130, 010902 (2021).
5. S. Lu, Y. Ouyang, C. Yu, P. Jiang, J. He, and J. Chen*, Tunable phononic thermal transport in two-dimensional C6CaC6 via guest atom intercalation, Journal of Applied Physics, 129, 225106 (2021).
6. Z. Zhang, Y. Guo, M. Bescond, J. Chen*, M. Nomura*, and S. Volz*, Generalized decay law for particlelike and wavelike thermal phonons, Physical Review B, 103, 184307 (2021).
7. P. Jiang, Y. Ouyang, W. Ren, C. Yu, J. He, and J. Chen*, Total-transmission and total-reflection of individual phonons in phononic crystal nanostructures, APL Materials, 9, 040703 (2021).
------------------------------------------------------------------------------------------------------------------------------------------------------------------------
2020
1.Y. Ouyang, Z. Zhang, C. Yu, J. He, G. Yan, and J. Chen*, Accuracy of Machine Learning Potential for Predictions of Multiple-Target Physical Properties, Chinese Physics Letters, 37, 126301 (2020). (Editor’s suggestion)
2. Z. Zhang, Y. Ouyang, Y. Guo, T. Nakayama, M. Nomura, S. Volz*, and J. Chen*, Hydrodynamic phonon transport in bulk crystalline polymers, Physical Review B, 102, 195302 (2020).
3. Z. Zhang, Y. Ouyang, J. Chen*, and S. Volz*, A phononic rectifier based on carbon schwarzite host–guest system, Chinese Physics B, 29, 124402 (2020).
4. J. He, Y. Ouyang, C. Yu, P. Jiang, W. Ren, and J. Chen*, Lattice thermal conductivity of β12 and χ3 borophene, Chinese Physics B, 29, 126503 (2020).
5. W. Ren, Z. Zhang, C. Chen, Y. Ouyang, N. Li, and J. Chen*, Phononic Thermal Transport in Yttrium Hydrides Allotropes, Frontiers in Materials, 7, 569090 (2020).
6. H. Wang, M. Narasaki, Z. Zhang, K. Takahashi, J. Chen*, and X. Zhang*, Ultra-strong stability of double-sided fluorinated monolayer graphene and its electrical property characterization, Scientific Reports, 10, 17562 (2020).
7. P. Jiang, S. Hu, Y. Ouyang, W. Ren, C. Yu, Z. Zhang, and J. Chen*, Remarkable thermal rectification in pristine and symmetric monolayer graphene enabled by asymmetric thermal contact, Journal of Applied Physics, 127, 235101 (2020).
8. Z. Zhang, Y. Ouyang, Y. Cheng, J. Chen*, N. Li*, and G. Zhang*, Size-dependent phononic thermal transport in low-dimensional nanomaterials, Physics Reports, 860, 1-26 (2020). (ESI Hot Paper & ESI Highly Cited Paper)
9. Z. Zhang, S. Hu, Q. Xi, T. Nakayama, S. Volz, J. Chen*, and B. Li, Tunable phonon nanocapacitor built by carbon schwarzite based host-guest system, Physical Review B, 101, 081402(R) (2020).
10. J. Wang†, Z. Zhang†, R. Shi, B. N. Chandrashekar, N. Shen, N. Wang, J. Chen*, and C. Cheng*, Impact of nanoscale roughness on heat transport across the solid-solid interface, Advanced Materials Interfaces, 7, 1901582 (2020). (Front cover)
11. X. Xu, J. Zhou*, and J. Chen*, Thermal transport in conductive polymer-based materials, Advanced Functional Materials, 30, 1904704 (2020).
------------------------------------------------------------------------------------------------------------------------------------------------------------------------
2019
1.Y. Ouyang, Z. Zhang, Q. Xi, P. Jiang, W. Ren, N. Li, J. Zhou, and J. Chen*, Effect of boundary chain folding on thermal conductivity of lamellar amorphous polyethylene, RSC Advances, 9, 33549–33557 (2019).
2. S. Hu, Z. Zhang, P. Jiang, W. Ren, C. Yu, J. Shiomi, and J. Chen*, Disorder limits the coherent phonon transport in two-dimensional phononic crystal structures, Nanoscale 11, 11839-11846 (2019).
3. Y. Ouyang, Z. Zhang, D. Li, J. Chen*, and G. Zhang*, Emerging Theory, Materials, and Screening Methods: New Opportunities for Promoting Thermoelectric Performance, Annalen Der Physik 531, 1800437 (2019).
4. D. Liu, X. Chen, Y. Yan, Z. Zhang, Z. Jin, K. Yi, C. Zhang, Y. Zheng, Y. Wang, J. Yang, X. Xu*, J. Chen, Y. Lu, D. Wei*, A. T. S. Wee, D. Wei*, Conformal hexagonal-boron nitride dielectric interface for tungsten diselenide devices with improved mobility and thermal dissipation, Nature Communications 10, 1188 (2019)
------------------------------------------------------------------------------------------------------------------------------------------------------------------------
2018
1. S. Hu, Z. Zhang, Z. Wang, K. Zeng, Y. Cheng, J. Chen*, and Z. Zhang*, Significant Reduction in Thermal Conductivity of Lithium Cobalt Oxide Cathode Upon Charging: Propagating and Non-propagating Thermal Energy Transport, ES Energy & Environment 1, 74-79 (2018).
2. H. Bao*, J. Chen*, X. Gu*, and B. Cao*, A Review of Simulation Methods in Micro/Nanoscale Heat Conduction, ES Energy & Environment 1, 16-55 (2018).
3. A. Adili†, Z. Zhang†, B. Chen†, S. Hu, J. Chen*, X. Xu*, and B. Li, Thermal rectification in Y-junction carbon nanotube bundle, Carbon 140, 673-679 (2018).
4. S. Hu†, Z. Zhang†, P. Jiang, J. Chen*, S. Volz*, M. Nomura, and B. Li*, Randomness-Induced Phonon Localization in Graphene Heat Conduction, J. Phys. Chem. Lett. 9, 3959-3968 (2018).
5. Z. Zhang, S. Hu, T. Nakayama, J. Chen*, and B. Li, Reducing lattice thermal conductivity in schwarzites via engineering the hybridized phonon modes, Carbon 139, 289-298 (2018).
6. Q. Xi, Z. Zhang, T. Nakayama*, J. Chen, J. Zhou*, and B. Li*, Off-center rattling triggers high-temperature thermal transport in thermoelectric clathrates: Nonperturbative approach, Phys. Rev. B 97, 224308 (2018).
7. Y. Ma†, Z. Zhang†, J.-G. Chen, K. Sääskilahti, S. Volz, and J. Chen*, Ordered water layer induced by interfacial charge decoration leads to an ultra-low Kapitza resistance between graphene and water, Carbon 135, 263-269 (2018).
8. C. Chen†, Z. Zhang†, and J. Chen*, Revisit to the Impacts of Rattlers on Thermal Conductivity of Clathrates, Front. Energy Res. 6, 34 (2018).
9. X. Xu, J. Chen*, J. Zhou*, and B. Li, Thermal Conductivity of Polymers and Their Nanocomposites, Adv. Mater. 30, 1705544 (2018). (ESI Highly Cited Paper)
10. Z. Zhang, and J. Chen*, Thermal conductivity of nanowires, Chin. Phys. B 27, 035101 (2018).
11. A. Aiyiti, S. Hu, C. Wang, Q. Xi, Z. Cheng, M. Xia, Y. Ma, J. Wu, J. Guo, Q. Wang, J. Zhou, J. Chen, X. Xu*, and B. Li*, Thermal conductivity of suspended few-layer MoS2, Nanoscale 10, 2727-2734 (2018).
12. N. Wang†, M. K. Samani†, H. Li, L. Dong, Z. Zhang, P. Su, S. Chen, J. Chen, S. Huang, G. Yuan, X. Xu, B. Li, K. Leifer, L. Ye, and J. Liu*, Tailoring the Thermal and Mechanical Properties of Graphene Film by Structural Engineering, Small 14, 1801346 (2018).
------------------------------------------------------------------------------------------------------------------------------------------------------------------------
2017
1.Z. Zhang, J. Chen*, and B. Li*, Negative Gaussian curvature induces significant suppression of thermal conduction in carbon crystals, Nanoscale 9, 14208-14214 (2017).
2. H. Wang†, S. Hu†, K. Takahashi, X. Zhang*, H. Takamatsu*, and J. Chen*, Experimental study of thermal rectification in suspended monolayer graphene, Nature Communications 8, 15843 (2017). (ESI Highly Cited Paper)
3. Q. Xi, Z. Zhang, J. Chen, J. Zhou*, T. Nakayama*, and B. Li*, Hopping processes explain linear rise in temperature of thermal conductivity in thermoelectric clathrates with off-center guest atoms, Phys. Rev. B 96, 064306 (2017).
4. Y. Zhao†, D. Liu†, J. Chen, L. Zhu, A. Belianinov, O. S. Ovchinnikova, R. R. Unocic, M. J. Burch, S. Kim, H. Hao, D. S. Pickard, B. Li*, and T. L. Thong*, Engineering the thermal conductivity along an individual silicon nanowire by selective helium ion irradiation, Nat. Commun. 8, 15919 (2017).
5. Z. Zhang, S. Hu, J. Chen*, and B. Li*, Hexagonal boron nitride: a promising substrate for graphene with high heat dissipation. Nanotechnology 28, 225704 (2017).
6. S. Hu, J. Chen*, N. Yang, and B. Li*, Thermal transport in graphene with defect and doping: Phonon modes analysis. Carbon 116, 139-144 (2017).
7. 张忠卫,陈杰*,二维材料中的热传导,中国材料进展,第36卷,第2期,141-148 (2017). (特邀综述)
------------------------------------------------------------------------------------------------------------------------------------------------------------------------
2016
1.J. Chen*, J. H. Walther, and P. Koumoutsakos*, Ultrafast cooling by covalently bonded graphene-carbon nanotube hybrid immersed in water. Nanotechnology 27, 465705 (2016).
2. X. Xu*, J. Chen*, and B. Li*, Phonon thermal conduction in novel 2D materials. J. Phys.: Condens. Matter 28, 483001 (2016).
------------------------------------------------------------------------------------------------------------------------------------------------------------------------
2015
1.J. Chen*, J. H. Walther*, and P. Koumoutsakos*, Covalently Bonded Graphene-Carbon Nanotube Hybrid for High-Performance Thermal Interfaces. Adv. Funct. Mater. 25, 7539-7545 (2015).
2. D. Alexeev†, J. Chen†, J. H. Walther, K. P. Giapis, P. Angelikopoulos, and P. Koumoutsakos*, Kapitza resistance between few-layer graphene and water: Liquid layering effects. Nano Lett., 15, 5744-5749 (2015). (†: equal contribution)